
IJSRSET173155 | Received : 01 Feb-2016 | Accepted : 07 Feb-2017 | January-February-2017 [(3)1: 243-251]

© 2017 IJSRSET | Volume 3 | Issue 1 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

243

Secure End Point Data Security Using Java Application

Programming Interface
Peter S. Nyakomitta

1
, Dr. Solomon Ogara

2
, Dr. Silvance O. Abeka

3

1, 2, 3
Department of School of Informatics and Innovative Systems, Jaramogi Oginga Odinga University of Science &

Technology, Bondo, Kenya

ABSTRACT

Most of the current instant messaging applications such as Telegram Secret Chat transmit packets in plain text. This

means that an intruder equipped with appropriate remote monitoring tools can sniff the packets being transmitted

and obtain the raw packets that are being relayed across the network. However, some of them like Whatsapp and

Facebook Messenger have embraced end –to-end encryption. In so doing, this encryption protects this data as it is

being passed from one device to another over communication channels. Effectively, this prevents potential

eavesdroppers such as telecommunication service providers, Internet service providers or the provider of the

communication service from being able to access the cryptographic keys needed to decrypt the conversation.

However, most messaging applications encrypt data but only between the user and the companies' servers. The

consequence of this is that the service providers can pry open the data being passed across their network data

anytime and access the information being passed between the communicating parties. This paper sought to develop

a port-based algorithm for packet encapsulation in instant messaging sessions. This is in realization of the fact that

even with end to end encryption, the instant messages are in plain text at the communicating devices. This means

that eavesdropping can still happen if these instant messages are read by people other than the ones for which the

communication was meant. A prototype instant messenger application was developed with end to end encryption in

place, as well as message encryption at the end devices. In this way, only a party that has a decryption key can read

the transmitted messages.

Keywords : Instant Messaging, packets, Whatsapp, Facebook Massager, Skype, Eavesdroppers, Port-based

algorithm.

I. INTRODUCTION

Instant messaging is a rapidly growing communications

means that is trendy with both home and business users.

It is ideal due to its effectiveness and easy means of

network-based communication. According to Wendy

(2013), it has become a popular form of communication

which is steadily emergent with service providers such

as WhatsApp having more than 800 million active users.

Owing to their

expansive feature sets, current mobile instant

messengers have diverse applications, including group

chats, sharing media files, dwelling with friends, and

even fleeting encounters with strangers.

Nearly all instant messaging systems utilize the same

basic client-server architecture. It normally requires that

users install instant messaging clients on their client

machines, which can either be desktop computers,

wireless devices, smart phones, tablets or personal

digital assistant (Neal, 2014). These clients then

establish a communication with an instant messaging

(IM) server that resides in the messaging provider’s

infrastructure to locate other users and exchange their

required messages.

In their study, Nardi et al., (2012) note that in most

cases, the messages exchanged are not sent directly

from the sender’s computer to the recipient’s computer.

Instead, these messages are sent first to an instant

messaging server. From this point, these messages are

relayed to the intended recipient. While the majority of

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 244

instant messaging systems employ centralized servers to

broadcast all messages, some of these instant messaging

systems provide peer-to-peer messaging. According to

Vleck (2015), in this model, clients contact the instant

messaging server to position other clients.

Thereafter, once the client chat program has managed to

establish the location of its communication partner, it

contacts this peer directly. In their study, Schiano and

Kamm (2013) pointed out that the advantage of this

scheme is that it offers better security than the client-

server client scheme when both users are on the same

local area network. This is mainly because the instant

messages do not travel over the Internet which is a

public infrastructure. However, if one user is located

outside the corporate network, messages sent between

machines are exposed to potential eavesdroppers, just as

in the client-server-client scheme.

Despite its vast usage, the instant messaging services

introduce a number of security risks if proper security

measures are not applied .According to Roberts (2015),

the current Internet Threat Model (ITM) including the

secure socket layer (SSL) model assumes an absolutely

vulnerable communication link with trusted end-points.

However, this assumption of secure end-points may

dent software security. This so because the present

Internet environment is contaminated with malicious

software (Malware) such as Trojan Horses, WORMS,

botnets and viruses, compromising of a huge number of

machines at any given point of time. Form this point of

view, it seems reasonable to conclude that an SSL based

solution is not adequate for instant messaging security.

II. METHODS AND MATERIAL

A. Related Work

Many instant messaging applications only encrypt

messages between the communicating parties and the

instant message providers. However, recently, facebook

messanger and WhatsApp started using end to end

encryption. With this encryption technology, only the

sender and the receiver can read what is sent, and

nobody in between, not even the instant messenger

provider. This is because the messages are secured with

a lock, and only the recipient and the sender have the

special key needed to unlock and read them. As Sanchez

(2014) notes, for added protection, every message that is

sent has its own unique lock and key. The advantage of

this approach is that all of this happens automatically

and therefore there is no need to turn on settings or set

up special secret chats to secure your messages.

However, according to Mahajan t al., (2013), end-to-

end encryption makes sure that data is transferred

securely between the communicating endpoints. In this

scenario, instead of an intruder trying to break the

encryption, an he can impersonate a message recipient

during key exchange phase. This can be done by

substituting his public key with that of the recipient's.

This essentially means that the messages are encrypted

with a key known to the intruder. Moreover, after

successfully decrypting the message, he can then

encrypt it with a key that he shares with the actual

recipient, or his public key in case of asymmetric

systems, and send the message on again to avoid

detection. This is in effect as a man-in-the-middle attack.

Another challenge with current instant message

applications is that companies normally willingly or

unwillingly introduce back doors to their software

(Anglano, 2014). This is meant to help subvert key

negotiation or bypass encryption altogether. For instant,

according to Barghuthi and Said, (2013), in 2013, was

shown that Skype had a back door which allowed

Microsoft to hand over their users' messages to the

National Security Agency despite the fact that those

messages were officially end-to-end encrypted.

A study by Bodriagov and Buchegger (2011) further

revealed some authentication issues in instant message

applications. Majority of the end-to-end encryption

protocols comprise some form of endpoint

authentication specifically to prevent man-in-the-

middle-attacks. As an illustration, one could rely on

certification authorities or a web of trust. An alternative

technique is to generate cryptographic hashes or

fingerprints based on the communicating users’ public

keys or shared secret keys. In this arrangement, the

communicating peers compare their fingerprints using

an outside (out-of-band) communication channel that

guarantees integrity and authenticity of communication

(but not necessarily secrecy), before starting their

conversation. Hence if the fingerprints are equivalent, it

is assured that there is in no man in the middle attack.

When displayed for human inspection, fingerprints are

usually encoded into hexadecimal strings. These strings

are then formatted into groups of characters for

readability. For example, a 128-bit MD5 fingerprint

would be displayed as follows shown in Figure 1.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 245

Figure 1. A 128-bit MD5 Fingerprint

Some protocols display natural language representations

of the hexadecimal blocks. Essentially, this is a one-to-

one mapping between fingerprint blocks and words, and

therefore there is no loss in entropy (Ricochet, 2014).

The problem crops in when the protocol chooses to

display words in the user's native (system) language.

The security concern is that this can make cross-

language comparisons prone to errors.

Moreover, in their study, Yusof and Abidin (2011)

pointed out that the end-to-end encryption paradigm

does not directly address risks at the communications

endpoints themselves. Each users’ communicating

device can still be hacked to steal his or her

cryptographic key, for example to create a man-in-the-

middle-attack, or simply read the recipients’ decrypted

messages. Even the most perfectly encrypted

communication pipe is only as secure as the mailbox on

the other end. This is the gap that this paper endeavored

to fill.

B. Methodology

This research work adopted the experimental research

design where there was a practical design and

implementation of an algorithm to protect the instant

messages at the end devices as well the data in transit in

communication networks. The integrated development

environment chosen was Jcreator and the proposed

algorithm was developed in Java programming language.

The experimentations included the design and testing

the algorithm in order to validate its performance as far

as the protection of instant messages is concerned. Java

was selected due to its support of networking libraries

that could allow two or more systems to communicate

using the concept of an IP address and a port number,

which together are called socket.

1. Client Design

This paper developed an algorithm that could mimic the

server and clients in an instant messaging

communication scenario. Figure 2 shows a snippet of

the developed algorithm.

Figure 2. Java Networking Support

As shown, the first line imported the java.io package,

which hold nearly every class employed to perform

input and output (I/O) in Java. Since the instant

messaging application needed input from users in form

of authentication keys and message chats, it was

necessary to have this package for input. Additionally,

the application needed to display the information to the

participants in form of message chats, hence the need

for output package. All these streams represent an input

source and an output destination.

The second package was that of the java.net package of

the J2SE APIs. This package consist of a collection of

classes and interfaces that provide the low-level

communication details, allowing users to write

programs that focus on solving the problem at hand. The

concept of network programming was employed to

writing an application programming interface that

executed across multiple in which the devices are all

connected to each other using a network.

The Sockets, Printstream and BufferedReader were then

initialized. A socket was used as an endpoint for

communication between the server and the client instant

messaging applications. This socket was configured to

utilize port 1234 for communication purposes. The host

IP address was set to be that of the localhost. After this ,

the port and IP address were bound to the socket. The

server socket waited for requests to come in over the

network from the IM participants. It then performed

some operation based on that request, and then returned

results to the clients.

The ‘input=new BufferedReader(new

InputStreamReader(socket.getInputStream()));’

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 246

statement was used to get the socket's input stream and

open a BufferedReader on it. Readers and writers

(Printstream) were then employed to write Unicode

characters over the socket. As shown in Figure 3, if the

client encountered an error in trying to access the server,

it generated an error, ‘Unknown host’, followed by the

IP address of the requesting client.

Figure 3. Server Contact and Connection Termination

Process

However, if the server contact was successful

(if(socket!=null)), a new thread to start conversation

with the client was created (new Thread(new

Client()).start();). From this point on, the server

continues to listen to the client, get its input and pass it

to other clients as confirmed by line that reads:

output.println(userip.readLine()). To display the

messages from one client to others, the following

snippet in Figure 4 was employed.

However, if the server contact was successful

(if(socket!=null)), a new thread to start conversation

with the client was created (new Thread(new

Client()).start();). From this point on, the server

continues to listen to the client, get its input and pass it

to other clients as confirmed by line that reads:

output.println(userip.readLine()). To display the

messages from one client to others, the following

snippet in Figure 4 was employed

Figure 4. IM Display to participants

It starts by creating a string variable which could hold

the chat messages. It then continues to display the chat

messages from the participants until the users agree to

tear down the connection as indicated by the following

lines:

while((msg=input.readLine())!=null)

System.out.println(msg);

The lines below were then employed to tear down the

connection:

output.close();

input.close();

socket.close();

2. Server Design

On the server side, similar packages as was the case

were imported as evident in Figure 5. These were the

java.io.*, and the java.net.* packages. In addition to

these two packages, the java.util.Scanner package was

imported to facilitate the reading of client chat messages

via the keyboard.

Figure 5. Server API Snippet

The server socket was then initialized to null and the

server was also configured to use port 1234 to

communicate with the client participants. If the server-

client connection over this port could not be established,

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 247

an error message to this effect was generated as

confirmed by the line that reads: catch(IOException e).

The server then proceeded to require the clients to input

their username that could be used to identify the client

user to other IM client participants as shown in Figure 6.

Figure 6. Client Identification Username

The ability to secure the chat messages at the end points

was one of the goals of this paper. As such, an API to

handle this functionality was created. Considering the

OSI reference model, then it could be seen that this API

worked at the presentation layer as shown in Figure 7.

Figure 7. Application of Proposed Algorithm in OSI

Model

This figure illustrates that the presentation layer is

responsible for data formatting and protection, as

exampled by encryption. This means that data

protection schemes such as TLS and SSL work in this

layer. These two security protocols are vulnerable to

attacks such as the BEAST and POODLE attacks.

However, the TCP protocol stack lacks the presentation

layer. In fact, the application, presentation and session

layers of the OSI are combined into a single layer in

TCP: the application layer as shown in Figure 8.

Figure 8. TCP and OSI Comparison

In TCP therefore, the data formatting functionality takes

place between the transport and the application layers.

In this regard, the developed algorithm was

implemented between the transport layer and the

application layer of the TCP so that it can provide the

required end point security as shown in Figure 9.

Figure 9: TCP Operation of the Proposed Algorithm

In order to ensure end point security, which is clearly

missing in the end to end protection, the proposed

algorithm included split knowledge type of security

model where the information or privilege needed to

perform an operation is divided among multiple users

such that no single persons has sufficient privileges to

compromise the security of an application. For this case,

the split knowledge consisted of byteArrayToHexString

transformation as shown in Figure 10.

Figure 10. Split Knowledge Transformation

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 248

The first line represents the Java StreamTokenizer class

(java.io.StreamTokenizer) which is used to can split the

characters read from a BufferedReader into separate

fragments. In this study, Java StreamTokenizer was used

to move through the tokens in the underlying

BufferedReader. This was done by calling the

nextToken() method of the StreamTokenizer inside the

try….catch..loop. After each call to nextToken(), the

StreamTokenizer had several fields that could be read

to see what kind of token was read and its value. This

concept was employed to capture the split key that was

used for client authentication. The authentication key

essentially consisted a concatenation of the participants

usernames and then getting the hexadecimal

equivalence of such a concatenation, which in this case

served as the decryption key as confirmed by Figure 11.

Figure 11. Client Authentication Process

Figure 12. Administrator Chat Termination

Chatting activities during business hours. However,

administrator termination does not expose the chats

being exchange to the administrator. It only indicates

that the chat server has been started, which can serve as

a clue to the administrator that some employees are

using this service. The authentication process for this

proposed algorithm can be presented in pseudo code

form as shown below.

1. Start

2. Determine client participants and concatenate their

usernames, S

3. Transform the concatenated string into decryption

key, Deckey =Trans(S)

4. Start the server

5. Client authenticate at the server using generated

Decryption key, Deckey

6. Compare Client Deckey with server split

knowledge, SK

7. If Deckey = SK

8. Decode message chats at end points

9. Else encipher messages at end points

The data flow diagram for this pseudocode is shown in

Figure 13. Compared to the current end to end

protection, the developed algorithm performs well in

ensuring end point security.

Figure 13. End Point Data Security Port-Based Data

Flow Diagram

III. RESULTS AND DISCUSSION

In this section, the results obtained from the

development and implementation of a port-based instant

messaging end point protection algorithm are presented.

To start off the chat process, the server was started as

sown in Figure 14.

Figure 14. Chat Activation

As this figure shows, upon successful compilation, the

server’s Java console indicates that the server has

actually been started. It additionally gives the

administrator an option to terminate the chat process by

pressing the Ctrl C keys.

After the server activation process, the clients were

required to enter their usernames. These usernames

were to be used to identify the participants during the

cat process and also to be part of the split knowledge

needed to form the decryption key. Figure 15 (a) and (b)

shows these processes.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 249

(a)

(b)

Figure 15. Client Usernames Capture

Figure 16. Decryption Key Formation

The first line shows the concatenated plaintext string

while the second line shows the transformed string that

would later be used as the decryption key for decoding

the instant chats. To ensure that the users not easily

forget this key, the application requires that they

confirm the entry of this string. The second last line

serves to inform the users that key

1DC961149CD68AB9517C18A8F9D01DE3FBD74ED

C would be their decryption key.

The proposed algorithm was to ensure that the instant

messaging chats are protected on the interfaces of the

end devices. This required that the data be in a

transformed format unless valid decryption keys are

entered by whoever wants to access these messages.

Figure 17 shows clients authenticating themselves at the

server with wrong decryption keys.

Figure 17. Client Authenticating With Wrong

Decryption Keys

Note that the entered

key1DC961149CD68AB9517C18A8F9D01DE3FBD7

does not match the generated decryption key of

1DC961149CD68AB9517C18A8F9D01DE3FBD74ED

C. Therefore, the application generates two error

messages for the two clients, ABEKA and SOLOMON.

Consequently, these IM participants can never receive

the other party’s message in plaintext. Instead, the

message arrives while it is transformed as shown in

Figure 18.

Figure 18. Transformed IM Chats- Client_1

This figure shows that the current user is ABEKA and

the communication recipient is SOLOMON. Since this

client entered an invalid decryption key, then the IM

chats arriving from SOLOMON, and IM chats directed

to SOLOMON will be in a transformed format. To

validate this, the IM chats arriving to SOLOMON were

also observed as shown in Figure 19.

Figure 19. Transformed IM Chats- Client_2

This figure confirms that SOLOMON receives

transformed messages from ABEKA. Additionally,

SOLOMON sends transformed messages to ABEKA. To

receive and send messages in human understandable

format, both clients must use their split knowledge of

the decryption key so that they can decode each other’s

message chats. Figure 20 shows the clients

authenticating with correct decryption keys.

Figure 20. Clients Authenticating With Valid

Decryption Keys

With proper entry of the split knowledge keys, the

clients engage in plaintext kind of communication as

shown in Figure 21. Therefore, the developed algorithm

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 250

managed to protect masquerading where a chat

participant tries to assume the identity of another chat

participant so as to get the content of the other party.

This would be difficult as it will require that the intruder

possess part of the split knowledge.

Figure 21. Client Chatting In Plaintext

In this way, end point security for the chats that arrive

on the end device interface are protected from the

snooping eyes of intruders. Te effect of this is that chat

participants are assured that they are engaging in a chat

session with true clients and not some masqueraders.

IV. CONCLUSION

Instant messaging applications have emerged as

convenient means of communication among individuals

both within and outside the organizations. Due to the

prevalence of the so called bring your own device

(BYUOD), organizations are increasingly allowing

these devices access to company resources. This means

that critical sensitive information may be residing in

employee devices. This means that this information

must be sufficiently protected from intruders. Since

instant message applications are one f the avenues that

can be employed to divulge organization’s sensitive

data, the developed algorithm sought to protect the data

in the end point devices against intruders.

V. REFERENCES

[1]. M. Wendy (2013). ZDNet UK; Instant messaging

boosts business.

[2]. H. Neal (2014). Semantic Security Response;

Threats to Instant Messaging.

[3]. B. Nardi, S. Whittaker, E. Bradner (2012).

Interaction and outeraction: instant messaging in

action. Proceedings of the ACM Conference on

Computer Supported Cooperative Work,

Philadelphia, Pennsylvania, USA

[4]. T. Vleck (2015) . Instant Messaging on CTSS and

Multics. Multicians.org.

[5]. J. Schiano, C. Kamm (2013). The character,

functions and styles of instant messaging in the

workplace. Proceedings of the ACM Conference

on Computer Supported Cooperative Work , New

Orleans, Louisiana, USA.

[6]. P. Roberts (2015). IDG News Service; MSN

Messenger Worm Steals Game Keys W32/Rodok-

A or Henpeck worm used via IM, then plant

trojan to lift game.

[7]. Sanchez, J., (2014). Malicious Threats,

Vulnerabilities and Defenses in WhatsApp and

Mobile Instant Messaging Platforms.

[8]. Mahajan, A., Dahiya, M., Sanghvi, H., (2013).

Forensic Analysis of Instant Messenger

Applications on Android Devices. Int. J. Comput.

Appl. 68, 38–44.

[9]. Anglano, C.,(2014). Forensic analysis of

WhatsApp Messenger on Android smartphones.

Digit. Investig. 11, 201–213.

[10]. Barghuthi, N.B. Al, Said, H., (2013). Social

Networks IM Forensics: Encryption Analysis. J.

Commun. 8.

[11]. Bodriagov, O., Buchegger, S.(2011). Encryption

for peer-to-peer social networks. In: Proceedings -

IEEE International Conference on Privacy,

Security, Risk and Trust and IEEE International

Conference on Social Computing,

PASSAT/SocialCom 2011. pp. 1302–1309.

[12]. Ricochet P. (2014). Anonymous and serverless

instant messaging that just works.

[13]. Yusof, M.K., Abidin, A.F.A., (2011). A secure

private instant messenger. In: 17th Asia-Pacific

Conference on Communications.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 251

Authors Bibliography

Pursuing Msc. In Information

Technology security and Audit from

Jaramogi Oginga Odinga University of

Science and Technology School of

Informatics and Innovative System

(JOOUST). His research interest is on

cloud computing, Virtualization, Computer Networks

Security, Modelling and simulation. He has published

numerous research articles covering areas such as

Analysis of VMware Hypervisor Security, IM security

in a virtual Environment, Simulation of LIFI technology

for secure data propagation among others. He is a

career banker with bias in e-banking systems.

Dr. Solomon O. Ogara, B.Sc.

(Egerton), B.Sc. (Arizona), M.Sc.

(Dakota), Ph.D. (North Texas) is

currently the Chairperson of the

Department of Computer Science

& Software Engineering, Jaramogi

Oginga Odinga University Of

Science And Technology. He has worked as an assistant

professor of computer information system at

Livingstone College. He has taught different computer

information systems and networking courses including:

Introduction to Computer Information Systems; Object

Oriented Programming; Decision Support & Business

Intelligence, Computer Architecture & Organization;

System Analysis and Design, Web Design using

HTML5; Database Management, Enterprise Network

Design, Wired, Optical and Wireless Communications;

Voice/VoIP Administration; Operating Systems with

UNIX and Windows Server; Data, Privacy and Security;

Principles of Information Security.

Dr. Silvance O. Abeka is

currently a Senior Lecturer and a

Dean- School of Informatics and

Innovative Systems of Jaramogi

Oginga Odinga University of

Science and Technology. He

worked previously as a Director-

Institute of Open and Distance Learning at Africa

Nazarene University and also as a Dean- Faculty of

Applied Science and Technology of Kampala

International University- Dar es Salaam Collage. He

holds a PhD in Management Information System

(MIS), Masters of Science in Computer Science from

University of Da es Salaam and Master of Business

Administration (Information Technology) from

Kampala International University. His research

interests include IT innovation adoption, open source

software study, IT offshoring, Management

Information Systems, Foundations of Network and

System Security, Impact of Digital Technologies on

Society, Networking Protocols and Topologies, Web-

Design and E- Learning Technologies.

